B41A-0416
Dissecting the Hydrobiogeochemical Box

Thursday, 17 December 2015
Poster Hall (Moscone South)
Yadi Wang1, Antonio Alves Meira Neto1, Aditi Sengupta1, Robert A Root1, Katerina Dontsova1, Peter A A Troch1 and Jon Chorover2, (1)University of Arizona, Tucson, AZ, United States, (2)University of Arizona, Soil, Water and Environmental Science, Tucson, AZ, United States
Abstract:
Soil genesis is a coupled hydrologic and biogeochemical process that involves the interaction of weathering rock surfaces and water. Due to strong nonlinear coupling, it is extremely difficult to predict biogeochemical changes from hydrological modeling in natural field systems. A fully controlled and monitored system with known initial conditions could be utilized to isolate variables and simplify these natural processes.

To investigate the initial weathering of host rock to soil, we employed a 10° sloping soil lysimeter containing one cubic meter of crushed and homogenized basaltic rock. A major experiment of the Periodic Tracer Hierarchy (PERTH) method (Harman and Kim, 2014) coupled with its bonus experiment were performed in the past two years. These experimental applications successfully described the transit-time distribution (TTD) of a tracer-enriched water breakthrough curve in this unique hydrological system (Harman, 2015). With intensive irrigation and high volume of water storage throughout the experiments, rapid biological changes have been observed on the soil surface, such as algal and grass growth. These observations imply that geochemical hotspots may be established within the soil lysimeter. To understand the detailed 2D spatial distribution of biogeochemical changes, 100 selected and undisturbed soil blocks, among a total 1000 sub-gridded equal sized, are tested with several geochemical tools. Each selected soil block was subjected to elemental analysis by pXRF to determine if elemental migration is detectable in the dynamic proto-soil development. Synchrotron XRD quantification with Reitveld refinement will follow to clarify mineralogical transformations in the soil blocks. The combined techniques aim to confirm the development of geochemical hotspots; and link these findings with previous hydrological findings from the PERTH experiment as well as other hydrological modeling, such as conducted with Hydrus and CATHY. This work provides insight to the detailed correlations between hydrological and biogeochemical processes during incipient soil formation, as well as aiding the development of advanced tools and methods to study complex Earth-system dynamics.