GC12B-11
The Carbon Budget of Coastal Waters of Eastern North America
Monday, 14 December 2015: 11:50
3014 (Moscone West)
Raymond Najjar, Pennsylvania State University Main Campus, University Park, PA, United States
Abstract:
Observations and the output of numerical and statistical models are synthesized to construct a carbon budget of the coastal waters of eastern North America. The domain extends from the head of tide to (roughly) the continental shelf break and from southern Florida to southern Nova Scotia. The domain area is 2% tidal wetlands, 19% estuarine open water, and 78% shelf water. Separate budgets are constructed for inorganic and organic carbon; for tidal wetlands, estuaries, and shelf waters; and for three main subregions: the Gulf of Maine, the Mid-Atlantic Bight, and the South Atlantic Bight. Net primary production for the study region is about 150 Tg C yr-1, with 12% occurring in tidal wetlands and 7% in estuaries. Though respiration and photosynthesis are nearly balanced in most systems and regions, tidal wetlands and shelf waters are each found to be net autotrophic whereas estuaries are net heterotrophic. The domain as a whole is a sink of 5 Tg C yr-1 of atmospheric CO2, with tidal wetlands and shelf waters taking up 10 Tg C yr-1 (split roughly equally) and estuaries releasing 5 Tg C yr-1 to the atmosphere. Carbon burial is about 3 Tg C yr-1, split roughly equally among tidal wetlands, estuaries, and shelf waters. Rivers supply 6-7 Tg C yr-1 to estuaries, about 2/3 of which is organic. Tidal wetlands supply an additional 4 Tg C yr-1 to estuaries, about half of which is organic. Carbon in organic and inorganic forms is exported from estuaries to shelf waters and from shelf waters to the open ocean. In summary, tidal wetlands and estuaries, though small in area, contribute substantially to the overall carbon budget of the region.