H21J-1540
Catchment hydrological change from soil degradation: A model study for assessing urbanization on the terrestrial water cycle

Tuesday, 15 December 2015
Poster Hall (Moscone South)
Lele Shu, Pennsylvania State University Main Campus, University Park, PA, United States and Christopher Duffy, The Pennsylvania State University, Department of Civil and Environmental Engineering, University Park, PA, United States
Abstract:
It is commonly held that land cover and land use changes from agriculture and urbanization impact the terrestrial water cycle primarily through changes in the land surface and canopy energy balance. Another, and in some cases more important factor is the role that landuse changes have on soil structure, compaction, and loss of carbon on hydrologic performance. The consequential change on soil properties, such as aggregation of soil particles, reduction of voids, impacts on matrix conductivity and macropore fractions, alter the hydrological processes in a watershed.

Macropores promote rapid water and gas movement under wet conditions while the soil matrix preserves the water-holding capacity necessary for plant growth. The physically-based Penn State Integrated Hydrologic Model (PIHM) simulates water movement in soil with Richard’s equation using an effective matrix-macropore conductivity. The model is able to capture the preferential flow and soil water storage in vertical and horizontal directions. Soil degradation leads to a reduction of the macropore fraction with dramatic changes in overall hydrologic performance under urban development and agricultural landuse practices. The effects on the terrestrial water cycle in the catchment reduce infiltration, soil water availability, recharge and subsurface baseflow to streams, while increasing heavy surface runoff and erosion.

 The Lancaster area and surrounding watershed in eastern Pennsylvania, USA is a benchmark watershed comprised of urban (24%), agricultural (58%) and forest lands (18%) respectively. After parameter estimation from national geospatial soils, landuse and historical climate reanalysis, three landuse scenarios were developed. 1) Pre-development forest landuse (<1700 AD), (2) deforestation for agriculture and light urban landuse (1700-1900), (3) urban-suburban development (1900-pres.). The watershed model was used to evaluate hydrologic changes due to landuse change and soil degradation. The effects of macropore reduction and compaction on hydrologic performance were found to be of the same order or greater magnitude than for changes in landuse practices alone. The research, funded by the US EPA, illustrates the complex interaction of landuse and soil changes on the terrestrial water cycle.