PP53B-2344
Calibration of Productivity Proxy Based on Fish Tooth Flux and Biogenic Barium in Pacific Deep-Sea Sediments

Friday, 18 December 2015
Poster Hall (Moscone South)
Karissa Vincent, Wheaton College, Geochemistry, Norton, MA, United States
Abstract:
Biological production is a key variable in paleoceanography, yet most measures reflect the detailed responses of specific biological communities—opal for biosiliceous producters, alkenones for some coccolithophorids, and percent carbonate for a heterogeneous mixture of calcareous phytoplankton and zooplankton, among others. We are developing a new method for extracting biogenic barite and fish teeth from deep-sea sediments and calibrating the fluxes of both components to satellite-derived ocean productivity. Both fish teeth and barite capture major components of biological production in the ocean. Teeth capture dynamics of high trophic level communities who depend upon lower level production in mostly short food chains. Barite reflects export flux of marine particulate carbon, and hence records the major producers of marine snow. Our methods digest sediments to remove carbonates, and concentrate teeth with heavy liquid separation. Barite is also concentrated by acid dissolution of carbonate, but then we dissolve barite, collect the sulfate in solution, and re-precipitate barite rather than use the time consuming and dangerous methods that are currently the industry standard. Counting the number of fish teeth present in the sample and extracting the amount of biogenic barium will discover two different proxies of productivity. The sample sites range throughout the Pacific Ocean, giving a wide scope of variability along with satellite productivity levels. The results between the amount of fish teeth as well as the biogenic barite levels will hopefully be at a similar level, indicating that this method is a new tried and true proxy for productivity in the future.