B11O-02
The Five-Year Fate of a 15N Tracer in a Mixed Deciduous Forest: Retention, Redistribution, and Differences by Mycorrhizal Association

Monday, 14 December 2015: 08:15
2008 (Moscone West)
Christine L Goodale, Cornell University, Ecology and Evolutionary Biology, Ithaca, NY, United States
Abstract:
The impact of nitrogen deposition on forest ecosystems depends in large part on its fate: uptake by trees can stimulate growth, while gaseous or leaching losses contribute to air and water pollution and represent the loss of a limiting nutrient. Past tracer studies have shown that soils dominate the short-term fate of added 15N, but its longer-term term fate remains uncertain. This study examined how much 15N tracer moved plant or soil pools or was lost over 5-6 years. In 2007, a 15N tracer (0.21 kg/ha as 99% enriched 15N-KNO3) was added to 0.25 ha mixed hardwood forest in central NY. All of the tracer was recovered in the days after its addition, but recovery fell to 78% by the end of this year (25% surface litter, 48% 0-10 cm soil, 5% roots). One year later, recovery in these pools fell (to 51%), with losses from surface litter (-11%) and the 0-10 cm soils (-15%), including losses from the “heavy” soil fraction. Additional tracer moved to other plant pools (+5%) and to deeper soil (+13%; up to 30 cm), for a total recovery of 69% of the added tracer. Between years 1 and 5-6, only total tracer recovery decreased by only 1.4%. Recovery decreased in foliage (-0.2%), all roots (-3.5%), and surface litter (-9.8%), while increasing in woody biomass (+0.9%), 0-10 cm soil (+8.9%), and deep soil (+2.3%; up to 50 cm). Tracer recovery in live and dead plant N pools (11%) did not change, as 3% moved from roots into aboveground plant tissues and 3% moved from live plant pools into leaf litter; these results imply no net transfer of 15N from soil to plants during this period. Over all 5-6 years, only 1.6% of the tracer moved into bark or wood, a small but important sink because of its high C:N ratio; however, roughly one-third of this total was in wood formed prior to the start of the tracer addition. Tree species differed in their recovery of 15N: the six species with ectomycorrhizal associations showed more enrichment than the four species with arbuscular mycorrhizae. It is not yet apparent whether ectomycorrhizal species were more effective at scavenging 15N at the time of tracer addition, or if they were better at acquiring 15N from its initial fate in litter and soil. Only continued long-term resampling can distinguish between these alternatives, and to what extent 15N initially retained in soil eventually moves into plants over decadal timescales.