P43B-2120
Chemical Composition of lower Mount Sharp at Gale Crater, Mars, as measured by the APXS

Thursday, 17 December 2015
Poster Hall (Moscone South)
Ralf Gellert1, Nick Boyd1, John L Campbell1, Scott VanBommel1, Glynis M Perrett1, Elstan Desouza1, Lucy M Thompson2, Albert S Yen3, Jeff A. Berger4 and MSL Science Team, (1)University of Guelph, Guelph, ON, Canada, (2)University of New Brunswick, Planetary and Space Science Centre, Fredericton, NB, Canada, (3)NASA Jet Propulsion Laboratory, Pasadena, CA, United States, (4)University of Western Ontario, London, ON, Canada
Abstract:
From sol 810 through to 950 the MSL Curiosity Rover carried out detailed investigations at Pahrump, which likely represents the lowest strata of Mount Sharp. The bulk chemistry is very different compared to previously encountered formations like Sheepbed at Yellowknifebay, which resembled an average Mars composition. The bedrock is significantly depleted in Mg and Ca, elevated in Al and Si and enriched in Zn (~2000 ppm), Se (~50 ppm) and Pb(~100 ppm). The composition varies only slightly over the ~10 meter elevation explored at Pahrump and is chemically homogenous on a 10 cm scale. However, some clear trends uphill are present. Zn and Se decrease with elevation, the Fe/Mn ratio, a possible indicator for the Fe3+ content, increases from 50 to 100. Elevated 2.5% P2O5 were encountered at higher elevations. SO3 ranges from 5 to 8% in the drill samples, higher abundances were found in Ca-sulfate veins and diagenetic features that contain ~15% (Mg,Ni)-sulfates.

The Pahrump bedrock may be traced ~500m to the north and south. Bonanza King (sol 755, Hidden Valley) and Spokane (sol 989) share the same major chemistry, including similar trends in minor and trace elements. Most recently the rover approached a contact between Pahrump-like bedrock and an overlying, more resistant unit identified from orbit at Marias Pass. High SiO2, ranging from 63 to 72%, was found close to the contact, above which the sandstone composition changes abruptly to that of average Mars.

Increased Si is correlated with elevated P and Ti, lower Al and Fe, and a dramatic decrease in Zn, Ni and Cr to very low values of a few 100 ppm and less. The elevated silica and associated elemental trends observed at Marias Pass share characteristics with the high silica bedrock examined at HomePlate in Gusev Crater, where acidic leaching or silica mobilization has been proposed. The stratigraphy together with data from 4 drill samples for SAM and Chemin might shed light on the formation history of this extensive facies at the base of Mount Sharp.