IN13B-1842
NASA Airborne Snow Observatory: Measuring Spatial Distribution of Snow Water Equivalent and Snow Albedo

Monday, 14 December 2015
Poster Hall (Moscone South)
Michael Joyce1, Thomas H Painter1, Chris A Mattmann1, Paul Ramirez2, Ross Laidlaw1, Kathryn J Bormann3, McKenzie Skiles1, Megan Richardson2 and Daniel F Berisford1, (1)NASA Jet Propulsion Laboratory, Pasadena, CA, United States, (2)Jet Propulsion Laboratory, Pasadena, CA, United States, (3)Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
Abstract:
The two most critical properties for understanding snowmelt runoff and timing are the spatial and temporal distributions of snow water equivalent (SWE) and snow albedo. Despite their importance in controlling volume and timing of runoff, snowpack albedo and SWE are still largely unquantified in the US and not at all in most of the globe, leaving runoff models poorly constrained. NASA Jet Propulsion Laboratory, in partnership with the California Department of Water Resources, has developed the Airborne Snow Observatory (ASO), an imaging spectrometer and scanning LiDAR system, to quantify SWE and snow albedo, generate unprecedented knowledge of snow properties for cutting edge cryospheric science, and provide complete, robust inputs to water management models and systems of the future.

This poster will describe the NASA Airborne Snow Observatory, its outputs and their uses and applications, along with recent advancements to the system and plans for the project’s future. Specifically, we will look at how ASO uses its imaging spectrometer to quantify spectral albedo, broadband albedo, and radiative forcing by dust and black carbon in snow. Additionally, we’ll see how the scanning LiDAR is used to determine snow depth against snow-free acquisitions and to quantify snow water equivalent when combined with in-situ constrained modeling of snow density.