A11O-07
Dependence of Simulated Tropospheric Ozone Trends on Uncertainties in U.S. Mobile Fleet Emissions.

Monday, 14 December 2015: 09:30
3010 (Moscone West)
Sarah A Monks, NOAA Boulder, Boulder, CO, United States
Abstract:
Long-term surface observations show a rapid increase in background concentrations of ozone since the 1960s. Global chemistry-climate models have difficulties in reproducing this trend, overestimating the mid-century observed concentrations. This suggests that the impacts of ozone on climate and air quality throughout the second half of the 20th century may be misrepresented in current models.

We use the MACCity emissions inventory constrained by ambient observations to examine the dependence of simulated long-term ozone trends on U.S. land transportation (mobile fleet) emissions of nitrogen oxides (NOX), carbon monoxide (CO) and volatile organic compounds (VOCs). Two sensitivity simulations are performed using the CAM-Chem chemical transport model, where the U.S. MACCity land transportation sector emissions of either NO or CO and co-emitted VOCs are constrained to the observed NO:CO ratio between 1960-2010. We present results from these sensitivity simulations to quantify the dependence of simulated background tropospheric ozone concentrations on these emissions.