NG41A-1772
Multiscale Analysis of the Water Content Output the NWP Model COSMO Over Switzerland and Comparison With Radar Data

Thursday, 17 December 2015
Poster Hall (Moscone South)
Auguste Gires, Ecole Nationale des Ponts et Chaussées, Champs-sur-Marne, France and Daniel Wolfensberger, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
Abstract:
The resolution of operational numerical prediction models is typically of the order of a few kilometres meaning that small-scale features of precipitation can not be resolved explicitly. This creates the need for representative parametrizations of microphysical processes whose properties should be carefully analysed. In this study we will focus on the COSMO model which is a non-hydrostatic limited-area model, initially developed as the Lokal Model and used operationally in Switzerland and Germany. In its operational version, cloud microphysical processes are simulated with a one-moment bulk scheme where five hydrometeor classes are considered: cloud droplets, rain, ice crystals, snow, and graupel. A more sophisticated two-moment scheme is also available. The study will focus on two case studies: one in Payerne in western Switzerland in a relatively flat region and one in Davos in the eastern Swiss Alps in a more complex terrain.
The objective of this work is to characterize the ability of the COSMO NWP model to reproduce the microphysics of precipitation across temporal and spatial scales as well as scaling variability. The characterization of COSMO outputs will rely on the Universal Multifractals framework, which allows to analyse and simulate geophysical fields extremely variabile over a wide range of scales with the help of a reduced number of parameters.
First COSMO outputs are analysed; spatial multifractal analysis of 2D maps at various altitudes for each time steps are carried out for simulated solid, liquid, vapour and total water content. In general the fields exhibit a good quality of scaling on the whole range of available scales (2 km - 250 km), but some loss of scaling quality corresponding to the emergence of a scaling break are sometimes visible. This behaviour is not found at the same time or at the same altitude according to the water state and does not necessarily spread to the total water content. It is interpreted with the help of the underlying physical process at stake during the events.
Second Multifractal comparisons of model outputs will also be made with radar data provided by the Meteo Swiss, both indirectly in terms of precipitation intensities and directly using a polarimetric forward radar operator which is able to simulate radar observations from model outputs.