A51P-0336
Tropical Cyclone Evolution and Water and Energy Fluxes: A Hurricane Katrina Case Study

Friday, 18 December 2015
Poster Hall (Moscone South)
Marielle Cristine Pinheiro, University of California Davis, Davis, CA, United States and Yaping Zhou, GESTAR/Morgan State University, Greenbelt, MD, United States
Abstract:
Tropical cyclones are a highly destructive force of nature, characterized by extreme precipitation levels and wind speeds and heavy flooding. There are concerns that climate change will cause changes in the intensity and frequency of tropical cyclones. Therefore, the quantification of the water and energy fluxes that occur during a tropical cyclone's life cycle are important for anticipating the magnitude of damages that are likely to occur. This study used HURDAT2 storm track information and data from the satellite-derived SeaFlux and TRMM products to determine changes in precipitation, wind, and latent and sensible heat throughout the life cycle of Hurricane Katrina. The variables were examined along and around the storm track, taking averages both at stationary 5x5 degree boxes and within the instantaneous hurricane domain. Analysis focused on contributions of convergence and latent heat to the storm evolution and examined how the total flux was related to the storm intensity. Certain features, such as the eye, were not resolved due to the data resolution, but the data captures the general trend of enhanced flux levels that are due to the storm's presence. Analysis also included examination of the water and energy budgets as related to convergence and the sensible and latent heat fluxes.