PP53D-03
A Multiproxy Reconstruction of Holocene Southern Westerlies from the Auckland Islands

Friday, 18 December 2015: 14:10
2012 (Moscone West)
Jonathan E Nichols, Lamont -Doherty Earth Observatory, Palisades, NY, United States
Abstract:
The strength and position of the Southern Hemisphere Westerly Wind belt plays an important role in our understanding of the global carbon cycle and glacial-interglacial climate change. We present a paleoclimate record that is primarily influenced by the strength and latitudinal position of the Southern Hemisphere Westerly Winds from a late Holocene lake sediment core and a peat core that spans the last 13,000 years, both obtained from New Zealand’s subantarctic Auckland Islands (50°S, 166°E). Several proxy indicators contribute to our reconstruction. Hydrogen isotope ratios of specific organic molecules allow us to reconstruct the hydrogen isotope ratios of precipitation. Using macrofossil counts and the abundances of leaf wax biomarkers, we are able to estimate the moisture balance at our sites. Model simulations of the Westerlies and the rate and isotope ratios of precipitation allow us to interpret our proxy data as changes in the strength and position of the Westerly Winds. In our lacustrine sediment, we found that the Westerlies have been shifting southward since the Little Ice Age, consistent with modern observations of a southward shift. In the peatland sediment, we found a multi-millennial northward shift in the Westerlies during the middle Holocene. We will present further ongoing work that strengthens the chronology of Auckland Islands environmental change and integrates these results with vegetation shifts identified in pollen and macrofossil data.