GC31A-1167
Evaluating Land-Atmosphere-Ocean-Sea Ice Interface Processes in the Regional Arctic System Model (RASM1.0)

Wednesday, 16 December 2015
Poster Hall (Moscone South)
Xubin Zeng and Michael Brunke, University of Arizona, Tucson, AZ, United States
Abstract:
Earth System Models (ESMs) have problems simulating climate in the Arctic region. For instance, there continues to be a wide spread in the simulations of the interannual variability and long-term trends of sea ice in the 20th century in the Coupled Model Intercomparison Project (CMIP5) models. Thus, there is also a wide spread in the trends in sea ice decline projected for the 21st century in the CMIP5 models. Recently, the Regional Arctic System Model version 1.0 (RASM1.0) has been developed to provide improved high-resolution simulations of the Arctic atmosphere-ocean-sea ice-land system. A major baseline for the performance of RASM is its comparison with reanalysis (that provides the lateral boundary condition to drive RASM) and with the coarser-resolution ESMs.

In this presentation, we will provide such a baseline with respect to the land-atmosphere-ocean-sea ice interface processes by comparing RASM with the Community Earth System Model (CESM) and three reanalysis products. First, 2-m air temperature, surface radiative and turbulent fluxes, and precipitation are compared to global datasets to assess the representation of these quantities in the models and reanalyses regionally. It is found that these quantities are generally better represented over land than over the oceans and sea ice. Then, we will further compare RASM, CESM, and reanalysis products with surface observations made at land flux towers, during northern high-latitude ship cruises over the oceans, and during the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment over sea ice. In these comparisons, we will focus on both the annual and diurnal cycles. For instance, the snow versus snow-free period over land will be emphasized, because the land-atmosphere coupling mechanism differs between the two periods. The impact of radiative fluxes on the diurnal temperature errors will also be emphasized. Furthermore, our newly-developed snow depth and snow water equivalent data over several 2deg X 2deg areas will be used to evaluate RASM, CESM, and reanalyses.