T23C-2966
Finite Element Stress Model of a Strike-Slip Duplex: A Case Study from Southern Chile

Tuesday, 15 December 2015
Poster Hall (Moscone South)
Pablo Cristián Iturrieta, Daniel Hurtado, Jose M Cembrano, Cristobal Valderrama and Ashley Stanton-Yonge, Pontifical Catholic University of Chile, Santiago, Chile
Abstract:
The Liquiñe-Ofqui Fault System (LOFS) is spatially and genetically related to seismic activity, volcanic hazard and hydrothermal resources in southern Chile. The LOFS is a regional-scale shear zone, which accommodates part of the oblique component of the convergence vector. In the LOFS southern end, an extensional strike-slip duplex arises from the connection between two NNE-striking master faults, where two damaging earthquakes (6.1-6.2 Mw) occurred in 2007. In order to understand the nature and origin of the stress field within the duplex area, we calculate the ellipticity of the stress tensor field by means of a 3D finite element model. The model represents the brittle-plastic transition in the mid crust, within which the fault zone is mechanically distinguished from the host rock in a continuum fashion. The fault zone is modeled by using an elastic-plastic constitutive relation, which is built on the basis of a range of width and orientation of mylonitic bands, representing the fault zone as seen in the field. Boundary conditions reproduce the convergence velocity between Nazca and South-America plates. Results are broadly consistent with structural data and seismicity recorded in the region. Extensional-to-transtensional stress regimes match spatially with a seismic swarm recorded in the region in 2007, and with the spatial distribution of quaternary volcanic centers. The model also shows a transpressive state of stress in the western branch of the LOFS, whereas in the eastern branch, pure strike-slip is obtained. We propose that the current duplex kinematics can be explained by convergence obliquity, duplex geometry and the occurrence of plastic deformation, which are sufficient enough to deliver the current stress configuration. Sources of discrepancy between structural data and model results might be explained by other factors not considered by the model, such as the timing of deformation or the current activity of blind faults.