H23C-1603
Quantifying Groundwater Recharge During Dynamic Seasonality in Cold Climates

Tuesday, 15 December 2015
Poster Hall (Moscone South)
Ehsan Pasha, University of Waterloo, Waterloo, ON, Canada and David L Rudolph, University of Waterloo, Earth and Environmental Sciences, Waterloo, ON, Canada
Abstract:
Estimating groundwater recharge in cold climates, during periods of dynamic seasonality such as winter and spring freshets is challenging due to subsurface heterogeneities and the complexity of vadose zone processes under partially frozen conditions. In order to obtain robust recharge estimates, numerical models simulating these complex processes need to be based on reliable parameter estimates and closely calibrated to field observations. This study focuses on quantifying recharge under an ephemeral stream that develops in the vicinity of a municipal well field during spring and winter freshets at a site in Southern Ontario. Temperature and moisture content profiles in the vadose zone were obtained during the 2015 spring melt at three different locations, using a variety of hydrogeological instruments. Temperature thermisters and Tid-Bit transducers were both installed at 15-30 cm spacings to the depth of the water table in order to compare and calibrate the results. Similarly, Time Domain Reflectometry probes were placed to the depth of the water table and the results were calibrated to daily moisture content readings taken with a Neutron Probe. Water table fluctuations were monitored and regular water samples were taken for analysis of geochemistry and isotope fractionation. This data provided the boundary conditions for the numerical model (Hydrus 1D) and allowed for its calibration and validation. Regions of rapid infiltration were observed at the site, as well as steep temperature gradients that could be used as a tracer for estimating recharge in cold climates. The geochemistry and isotope fractionation results provided support of surface water groundwater interaction within event based time periods predicted by the numerical models. Furthermore, the surface water samples were found to have high concentrations of microbial indicator species, and therefore the intense recharge phenomena observed at the site has significant implications to groundwater vulnerability. The results of this study are important in managing the sustainability of groundwater resources from surface contaminants such as pathogens and for informing source water protection strategies in response to dynamic seasonality.