Uplift Sequence of the Main Morphoestructural Units of the South Central Andes at 30°S: Insights from a Multidisciplinary Approach

Tuesday, 15 December 2015
Poster Hall (Moscone South)
Ana Clara Lossada, University of Buenos Aires, Buenos Aires, Argentina
The South Central Andes at 30°S represent a key area to understand the Andes geodynamics as it corresponds to the flat slab segment, characterized by a subhorizontal subduction angle, absence of Neogene magmatism and a highly compressive tectonic regime. Under these settings, crustal shortening is believed to be the principal mechanism responsible for the rise of the Andes. However, the sequence of uplift of the different morphoestructural units composing the orogen is not fully understood; neither do the location and time of activity of intracrustal detachments and their connection with shallower structures. We attempt to develop a multidisciplinary analysis that allow us to characterize the timing, magnitude and activity of the principal structures involved in the construction of the Andes at 30°S trough the Coastal Range, the Frontal Cordillera and the Precordillera.

The main phase of deformation in the Coastal Range occurred between 60 and 40Ma, based on published thermochronological and structural data. Our structural analyses constrain the Frontal Cordillera uplift between 18 and 13Ma. In the Precordillera area, in turn, we carried out structural, sedimentological and U-Pb provenience studies. Provenience studies and the 12 and 9Ma ages obtained for the youngest zircons indicated that the main thrusts uplifting the western sector of the Precordillera thrust system were activated since 13Ma at this latitude, and not before that time as it was previously suggested.

In order to better constrain the exhumation and thermal history of Frontal Cordillera, a thermochronological study is being conducted. Twenty samples for apatite fission tracks (AFT) and apatite (U-Th)/He (AHe) were collected from two vertical profiles located at western sector (Guanta granitoid) and eastern sector (Colanguil granitoid) of the Frontal Cordillera system. Samples are currently being processed, and they are partially reseted, which will allow us to obtain a cooling age. The aim is to combine this new thermochronologic data with field observations of the geological structures and kinematic analysis of the principal features, and develop an exhumation/uplift model for the Frontal Cordillera at 30°S, which will improve our understanding of the structural evolution of this area.