A41N-07
Coherent Cloudiness Variability from Sierra Nevada to the Sea in California

Thursday, 17 December 2015: 09:30
3006 (Moscone West)
Edwin Sumargo, Scripps Institution of Oceanography, La Jolla, CA, United States and Daniel R Cayan, University of California San Diego, La Jolla, CA, United States
Abstract:
Cloud variability serves as the principal modulator of incoming solar radiation. These cloud effects are particularly important in mountain settings such as the Sierra Nevada in California, because the solar irradiance is a primary input to the snowpack energy balance. An important, unanswered question is whether the mountain clouds over the Sierra Nevada are only one part of a larger-scale system or whether they vary distinctly from cloud patterns upstream over the Central Valley and coastal areas. To address this question we investigate cloud variability over California using 19 years (1996-2014) of GOES visible albedo product with 4-km spatial and 30-minute temporal resolutions. Two domains are considered: high elevations in which only higher (>800m) elevations are included, thus excluding the coast and valley clouds, and all elevations which includes all elevations from the offshore North Pacific to Nevada. Our focus is on the spring and early summer period, which is crucial because it includes much of the snowmelt runoff from the Sierra Nevada. Inter-annual variation of cloudiness, represented by the coefficient of variation of cloud albedo, reveals the highest relative variability from California coasts and lowlands in the winter and spring to highlands and mountains in the summer and autumn. This pattern also occurs across shorter to longer time-scales, with coefficient of variation ranging from 30-180% on daily scale to 5-40% on seasonal scale. Considering the spatial structure of anomalous cloudiness, rotated EOF (REOF) analyses of de-seasonalized daily cloud albedo in the high elevation domain yields patterns and temporal variations that are well correlated with those from the all elevation domain. This indicates that, to a large degree, the mountain clouds co-vary with those over the Central Valley and the California coast, even though the valley and coastal clouds include low stratus clouds. The monthly standard deviations of the amplitudes of the time varying patterns represented by the REOFs reveal strong variability in the winter and spring.