H12A-02
PFLOTRAN Simulation of Waste Isolation Pilot Plant Single Waste Panel
Monday, 14 December 2015: 10:35
3018 (Moscone West)
Heeho Park, Sandia National Laboratories, Carlsbad, NM, United States and Glenn E Hammond, Sandia National Laboratories, Albuquerque, NM, United States
Abstract:
The Waste Isolation Pilot Plant (WIPP), located in southeastern New Mexico, has been developed by the U.S. Department of Energy (DOE) for the deep geologic disposal of transuranic (TRU) waste. WIPP performance assessment (PA) calculations estimate the probability and consequence of potential radionuclide releases from the repository to the accessible environment arising from events and processes that could occur over the 10,000 year regulatory period. The conceptual model estimates three possible cases and the combinations of these cases: 1) undisturbed condition of the repository, 2) human borehole intrusion condition that penetrates the repository, and 3) human borehole intrusion that penetrates pressurized brine underlying the repository. To date, WIPP PA calculations have employed multiple two-dimensional (2D) numerical models requiring simplification of the mesh and processes including homogenization of materials and regions while maintaining volume aspect ratio. Introducing three-dimensional (3D) numerical models within WIPP PA enables increasingly realistic representations of the WIPP subsurface domain and improved flexibility for incorporating relevant features. PFLOTRAN is a state-of-art massively parallel subsurface flow and reactive transport code that will be implemented to enhance PA with more physically realistic 3D flow and transport models; eliminating the need for multiple related, but decoupled 2D models. This paper demonstrates PFLOTRAN simulation of a single waste panel of the WIPP undisturbed condition in 3D. The simulation also employs newly implemented WIPP specific functionalities to PFLOTRAN: 1) gas generation from the wastes, 2) creep closure of bedded salt formation, 3) fractures of marker beds near the excavation, 4) Klinkenberg effect on gas permeability in low-permeable materials, and 5) Redlich-Kwong-Soave equation of state for gas density.