B13D-0652
Methanotrophic N2-Fixation in Boreal Peatlands: Master Regulation of Newly Fixed N and Moderation of CH4 Fluxes to the Atmosphere

Monday, 14 December 2015
Poster Hall (Moscone South)
Mikah Schlesinger, Villanova University, Biology, Villanova, PA, United States
Abstract:
Boreal peatlands are important to global carbon (C) and nitrogen (N) cycling. While they cover only 3-4% of the terrestrial surface, they account for 25-30% and 9-15% of the world’s soil C and N, respectively. Globally, peatlands function as a net sink for atmospheric CO2, but also act as a net source of CH4. In peatlands of Alberta, Canada, rates of atmospheric N deposition are low: ~1 kg·ha-1·yr-1, however, NPP of Sphagnum mosses is surprisingly high. Sphagnum mosses are able to maintain high levels of NPP due to their symbiotic relationship with N2-fixing methanotrophs. Annually, rates of N2-fixation typically provide between 10-30 kg of newly fixed N per ha, while also oxidizing CH4. CH4 fluxes from boreal peatlands in Canada are typically quite low, however, fluxes also can be high during rare episodic ebullition events. CH4 accumulation and storage is substantial, especially at depth as CH4 concentrations in peat pore water typically exceed 1000 µM at 1-m below the peat surface. Given that CH4 fluxes are typically low, we wanted to examine the importance of CH4 oxidation in these same peats. We hypothesized that methanotrophic N2-fixation may be important not only in providing inputs of newly fixed N, but also in regulating CH4 emissions from peatlands. We measured concentrations of CH4 in peat porewaters, CH4 flux rates, CH4 oxidation rates, biological N2-fixation rates. Porewater CH4 concentrations were highest at depth and decreased to negligible amounts closer to the surface of the water table. CH4 flux rates were low and ranged from -2.6 to +8.7 µmol·m-2·min-1 (negative values indicate net CH4 consumption). In Sphagnum incubations, rates of CH4 oxidation (0.6-10.2 mmol·m-2·min-1) were ~2-3 orders of magnitude higher than CH4 flux rates. Additionally, N2-fixation rates in paired cores ranged from 11.7-63.3 kg·ha-1·yr-1; CH4 oxidation rates in these same units ranged from ~3.1-622 kg·CH4 oxidized ha-1·yr-1. Additionally, we confirmed that N2-fixing methanotrophs (not cyanobacteria) were the dominant fixers by quantifying gene expression of nifH, the gene that encodes for N2-fixation. Collectively, these data confirm that N2-fixing methanotrophs both provide inputs of newly fixed N, and substantially moderate CH4 fluxes from boreal peatlands of Alberta to the atmosphere.