GC11H-1111
Bridging Epidemiology and Remote Sensing: A Case Study of Dengue Fever and Land Use and Land Cover Change in Roatán, Honduras
Monday, 14 December 2015
Poster Hall (Moscone South)
Cascade Tuholske, University of California Santa Barbara, Santa Barbara, CA, United States
Abstract:
Dengue fever is one of the fastest spreading infectious diseases in Latin America and the Caribbean. As part of a yearlong epidemiological study of dengue, this paper takes the first step to model the relationship between the urban/built environment and incidents of dengue fever in Roatán, Honduras. Roatán has experienced an 80-fold increase in annual tourists since the 1990s, with over 1.2 million people now visiting the island yearly. In tandem, the Caribbean island’s population has exploded from fewer than 13,000 people in the 1970s to over 100,000 people today. Using broadband remote sensed satellite imagery, this paper maps and measures how this massive influx of tourists and population has altered the island’s landscape. Results from a decision tree classifying technique applied to a Landsat 5 Thematic Mapper (TM) image from 1985 and Landsat 8 Operational Land Imager (OLI) image from 2014 suggest a rapid pace of urbanization; built and impervious surface has increased over 300% in the last 30 years. Emerging research suggests, similar to other mosquito-borne diseases, a correlation between built environment and risk to dengue because of the increase in stagnate water that serve as disease-host reservoirs. This remote sensing analysis will be integrated with georeferenced household level data of cases of dengue collected during a year-long cross-sectional study of dengue patients in Roatán. The result will be to model the relationship between dengue fever and urban/built environment.