G13A-1015
GPS measurements of deformation near the Rio Grande rift: Evidence for variations in the rate of extension
Monday, 14 December 2015
Poster Hall (Moscone South)
Kyle D Murray, New Mexico Institute of Mining and Technology, Socorro, NM, United States
Abstract:
We use data from 215 continuous GPS stations, including 26 stations installed in 2006-2007 as part of a collaborative EarthScope experiment, to investigate how deformation is distributed near the Rio Grande rift (RGR) in New Mexico (NM) and Colorado (CO), USA. Our previous analysis, using data from 2006-2010, found nearly uniform 1.2±0.2 nanostrain/yr (nε/yr) east-west extensional strain rate along 5 profiles spanning a ~1000 km region (Berglund et al., 2012). We have included data from 1996-2015, and more formally account for correlated noise in the time series, which reduces horizontal velocity uncertainties to ~0.06 mm/yr. Strain rate along the profiles across the RGR increases from 0.55±0.06 nε/yr in southern NM to as much as 1.05±0.06 nε/yr in southern CO before dropping to ~0 nε/yr, within error, in northern CO. In all 5 east-west profiles across the RGR, strain rate is higher along the profiles west of the fault-defined rift zone than it is to the east—an increase to 1.65±0.1 nε/yr in southern CO, for example. Results from Euler pole analysis of sites within the Colorado Plateau relative to stable North America are consistent with significant internal deformation within the plateau, and using a subset of sites, we infer an Euler pole located in northern Utah that is roughly consistent with geologically derived estimates of a Miocene clockwise rotation (Chapin and Cather, 1994). A 2-dimensional strain rate field shows little evidence for higher extensional rates directly across the surface faults bounding the RGR, but does suggest a higher concentration along the Jemez lineament, which is a linear series of the youngest volcanic activity in NM located primarily at the SE edge of the Colorado Plateau. Two zones of possible contraction exist north and south of the Jemez lineament, which may reflect uplift from the NE section of the Jemez lineament due to upper mantle buoyancy.