H41G-1454
Mega drought in the Colorado River Basin, water supply, and adaptive scenario planning for the Phoenix Metropolitan Area; simulations using WaterSim 5.

Thursday, 17 December 2015
Poster Hall (Moscone South)
David A Sampson, Arizona State University, Tempe, AZ, United States
Abstract:
The Decision Center for a Desert City (DCDC), a boundary organization, bridges science and policy (to foster knowledge-based decision making); we study how decisions are made in the face of uncertainty. Our water policy and management model for the Phoenix Metropolitan Area (hereafter “Phoenix”), termed WaterSim, represents one such bridging mechanism. We evaluated the effect of varying the length of drought on water availability for Phoenix. We examined droughts (starting in 2000) lasting 15, 25, and 50 years. We picked a 60-year window of runoff estimates from the paleo reconstruction data for the Colorado River (CO) (1121 through 1180 A.D.), and the two local rivers (1391 through 1450 A.D.), and assumed that the proportional difference in median flow between these periods and the long-term record represented an estimate of potential drought reductions on river flows. This resulted in a 12%, and 19% reduction in flows for the CO River and the Salt-Verde (SV) Rivers, respectively. WaterSim uses 30-year trace periods from the historical flow records to simulate river flow for future projections. We used each 30-year trace from the historical record (1906 to present, CO River; 1945 to present SV Rivers) , and default settings, to simulate 60 year projections of Lake Mead elevation and the accompanying Colorado River water shortages to Phoenix. Overall, elevations for Lake Mead fell below the 1st shortage sharing tier (1075 ft) in 83% of the simulations; 74% of the simulations fell below the 2nd tier (1050 ft), and 64% fell below the 3rd (1025 ft). Length of drought, however, determined the shortage tiers met. Median elevations for droughts ending in 2015, 2025, and 2050 were 1036, 1019, and 967 feet msl, respectively. We present the plausible water futures with adaptive anticipatory scenario planning for the projected reductions in surface water availability to demonstrate decision points for water conservation measures to effectively manage shortage conditions.