V53H-08
An Update to the EARTHTIME Argon Intercalibration Pipette System (APIS): Smoking from the Same Pipe

Friday, 18 December 2015: 15:25
310 (Moscone South)
Brent D Turrin, Rutgers University, Piscataway, NJ, United States
Abstract:
Background: An initial 40Ar/39Ar inter-calibration experiment, using two of the most commonly used 40Ar/39Ar mineral standards, Fish Canyon (FC, ~28.2 Ma) and Alder Creek (AC, ~1.2 Ma) sanidines, revealed significant inter-laboratory inconsistencies. The reported ages for the AC sanidines range from 1.173 to 1.200 Ma (FC 28.02) (±~2%), ~4 times greater than the reported precisions. These experiments have motivated the 40Ar/39Ar community to reevaluate procedures and subsequent informal lab intercalibrations experiments are in better agreement, but discrepancies remain that need to be addressed. Experiment: In an effort to isolate the causes of these inconsistencies, an Argon Intercalibration Pipette System (APIS) was designed and constructed. The APIS system consists of three gas canisters; one containing atmospheric Ar and the other two canisters contain 40Ar/39Ar ratios that represent FC and AC. The volumes of the pipettes, bulbs and manifold are determined to within 0.4% and both systems were initially filled to the same pressure with Ar standard gases. Each canister has 4x10-10 moles of 40Ar, is equipped with a 0.1, 0.2 and 0.4 cc pipettes and can deliver increments from 0.1-0.7 cc. APIS-1 was designated as the traveling unit that is brought to participating labs, APIS-2 is the reserve/master standard. Early Results and Impressions: APIS-1 has been to four labs (Rutgers, LDEO, New Mexico Tech, and BGC) and is heading to ASU. Early APIS experimental data indicate that the inter-laboratory 40Ar/39Ar age results can meet or exceed the EARTHTIME goal of ±1‰ precision. The inter-laboratory comparisons are ongoing, and will include additional laboratories of opportunity. Lastly, the development of additional mineral standards that “fill in” the age gaps between the existing mineral standards would significantly improve attempting to achieve interlaboratory agreement at the ±1‰ level