P44A-08
Asteroid Regolith Simulants: Development, Characteristics, and Testing

Thursday, 17 December 2015: 17:24
2007 (Moscone West)
Daniel Turner Britt, University of Central Florida, Physics, Orlando, FL, United States
Abstract:
As part of a NASA Small Business Innovation Research (SBIR) award to the University of Central Florida and Deep Space Industries, we are developing a family of asteroid regolith simulants based on meteorite mineralogies but using terrestrial materials, to support NASAs exploration goals for asteroids. We are planning on developing five types of simulant based on the following meteorite types: CI-carbonaceous chondrite, CM-carbonaceous chondrite, Tagish Lake, L-ordinary chondrite, and iron. To the greatest extent reasonable (based on input costs and health/safety) we will duplicate the mineralogy, chemistry, oxidation state, hydration state, and particle size distribution found in regolith meteorites of each type. The major limitations on the fidelity of simulant will be health and safety issues for the users of the simulants. For example, much of the organic component of volatile-rich carbonaceous chondrites are in the form of Polycyclic Aromatic Hydrocarbons (PAHs). These are essentially combustion residues, possibly of complex regolith processing, with more carbon atoms than hydrogen. However, many PAHs are toxic, carcinogenic, and/or mutagenic. Several are banned in the European Union and California. This sort of material would endanger users, be impossible to distribute, and not make a useable regolith simulant. There are several reasonable, no-toxic alternatives to PAHs. We will report on the status of simulant development and the progress of our validation experiments.