H43F-1590
Sequential Leaching of Chromium Contaminated Sediments - A Study Characterizing Natural Attenuation

Thursday, 17 December 2015
Poster Hall (Moscone South)
Dea Musa1, Sara Beroff1, Mei Ding1, Michael Rearick1, George Perkins1, Giday W WoldeGabriel1, Emily Kluk1, Paul W. Reimus2, Danny Katzman2 and Jeffrey M Heikoop1, (1)Los Alamos National Laboratory, Earth and Environmental Science Division, Los Alamos, NM, United States, (2)Los Alamos National Laboratory, Los Alamos, NM, United States
Abstract:
Natural attenuation is an important process in slowing down the transport of hexavalent chromium, Cr(VI), an anthropogenic environmental contaminant, either by adsorption of Cr(VI) to sediments, or by reduction to nontoxic trivalent chromium, Cr(III). The capacity and mechanism of attenuation is explored in this sequential leaching study of different particle size fractions of chromium contaminated sediments and similar uncontaminated sediments from the regional aquifer near Los Alamos, New Mexico. Using this leaching protocol each sediment sample is split in two: one half is leached three times using a 0.1 M sodium bicarbonate/carbonate solution, while the second half is leached three times using a 0.01 M nitric acid, followed by two consecutively increasing magnitudes of nitric acid concentrations. Based on the amphoteric nature of chromium, alkaline leaching is used to establish the amount of Cr(VI) sorbed on the sediment, whereas acid leaching is used to establish the amount of Cr(III). The weak acid is predicted to release the attenuated anthropogenic Cr(III), without affecting Cr-bearing minerals. The sequential, stronger, acid is anticipated to leach Cr(III)-incorporated in the minerals. The efficiency and validation of the sequential leaching method is assessed by comparing the leaching behavior of bentonite and biotite samples, with and without loaded Cr(VI). A 97% chromium mass balance of leached Cr(VI)-loaded bentonite and biotite proves the viability of this method for further use on leaching contaminated sediments. By comparing contaminated and uncontaminated sediment leachate results, of chromium and other major and trace elements, the signature of anthropogenic chromium is determined. Further mineralogical characterization of the sediments provides a quantitative measure of the natural attenuation capacity for chromium. Understanding these results is pertinent in delineating the optimal procedure for the remediation of Cr(VI) in the regional aquifer near Los Alamos.