B33B-0650
Factors Governing the Germination of Sulfate-Reducing Desulfotomaculum Endospores Involved in Oil Reservoir Souring.

Wednesday, 16 December 2015
Poster Hall (Moscone South)
Angela Sherry1, Emma Bell2, Guillermo Cueto1, Ana Suarez-Suarez1, Giovanni Pilloni3 and Casey RJ Hubert1, (1)Newcastle University, Civil Engineering and Geosciences, Newcastle Upon Tyne, United Kingdom, (2)Newcastle University, School of Civil Engineering and Geosciences, Newcastle Upon Tyne, United Kingdom, (3)Exxonmobil corporate strategic research, New York, NY, United States
Abstract:
Reservoir souring is caused by the activity of sulfate-reducing microorganisms (SRM) in subsurface oil reservoirs, and is often induced by seawater injection during secondary oil recovery. Souring can potentially contribute to corrosion of infrastructure, health and safety hazards to the workforce, and reduction in value by increasing refining costs associated with producing the oil resource. Souring causes annual losses in the billions of dollars to the oil industry. Endospore-forming SRM, such as Desulfotomaculum spp., are often suspected culprits in reservoir souring. Endospores can survive unfavourable conditions for long periods, yet remain poised to germinate and become active if conditions become more favourable. Factors governing endospore germination are poorly understood, but are thought to include availability of nutrients, possibly metabolic by products of other anaerobic bioprocesses, and/or variations in temperature. Most research has focused on aerobic Bacillus spp., with very few studies dedicated to spore germination among anaerobes (order Clostridiales) including the sulfate-reducing Desulfotomaculum found in anoxic subsurface petroleum reservoirs. For Desulfotomaculum spores in deep hot oil reservoirs, cold seawater introduction during secondary oil recovery may create thermal viability zones for sulfate reduction near the injection wellbore. To evaluate these processes, sulfate-containing microcosms were prepared with different marine sediments as a source of spores, and amended with organic substrates in the presence or absence of oil. Incubation at 80°C for six days was followed by a down-shift in temperature to 60°C to mimic cold seawater injection into a hot reservoir. Souring did not occur at 80°C, but commenced within hours at 60°C. Microcosms were monitored for sulfate reduction and organic acids in combination with next generation sequencing of 16S rRNA genes (Ion Torrent, Illumina MiSeq). Through a combination of high-throughput microbial DNA sequencing and geochemical process analyses we show that altered conditions in oil reservoirs during seawater flooding activates dormant Desulfotomaculum endospores, which leads to reservoir souring, and provide insights on the factors governing the germination of endospores in the deep hot biosphere.