T23A-2933
Structural analysis of the Cordillera Blanca detachment: Geometry, kinematics and fault rocks

Tuesday, 15 December 2015
Poster Hall (Moscone South)
Colin A Shaw1, Micah J Jessup2, Cameron A Hughes2 and Dennis L Newell3, (1)Montana State University, Bozeman, MT, United States, (2)University of Tennessee, Knoxville, TN, United States, (3)Utah State University, Logan, UT, United States
Abstract:
The Cordillera Banca Detachment (CBD) in the north-central Peruvian Andes is recognized as a rare example of active extension parallel to the direction of shortening within a convergent orogenic setting. Despite longstanding interest in the geodynamic significance of the CBD relatively little work has been done to characterize the basic geometry, kinematics and evolution of the detachment or the petrology and distribution of brittle and ductile tectonites within the fault zone. This contribution presents preliminary results of a basic structural analysis of the CBD based on field observations, laboratory results, and GIS analysis. Basic structural observations of fault geometry and kinematics are needed to constrain the regional geodynamic role of the CBD.

The NNW topographic trace of the CBD is defined by faceted ridges up to 2000 m in height. The lower slopes of the facets are locally cut by steep fault scarps that offset quaternary glacial moraines, debris fans and colluvium. The shear zone comprises both brittle and ductile tectonites including mylonite series rocks, pseudotachylyte, and breccia – often highly silicified. Highly polished mirrored surfaces are observed locally. Deformation mechanisms show a consistent progression from plastic in structurally lower positions to brittle in structurally higher positions. Evidence for overprinting deformation mechanisms is preserved in many samples. The shear zone ranges up to about 200 m thick. The average orientation of mylonitic foliation and fault slip surfaces (strike/dip = 140/30) and lineations/slickenlines (plunge-trend = 35-235) is quite consistent along the ~200 km detachment, but some systematic variation along strike may be related to concave fault segments or corrugations. Slip indicators are nearly down-dip with a minor left-lateral or right-lateral component in some locations. Offsets in marker horizons constrain total offset between about 4500 m near the central section of the fault to near zero approaching the fault tips. Structural observations are consistent with a long history of displacement across the CBD resulting in the progressive exhumation of deep rocks under relatively constant tectonic conditions.