B21D-0487
Three Different Methods of Estimating LAI in a Small Watershed

Tuesday, 15 December 2015
Poster Hall (Moscone South)
Heather Nicole Speckman1, Brent E Ewers2 and Daniel Beverly2, (1)University of Wyoming, WyCEHG, Laramie, WY, United States, (2)University of Wyoming, Botany, Laramie, WY, United States
Abstract:
Leaf area index (LAI) is a critical input of models that improve predictive understanding of ecology, hydrology, and climate change. Multiple techniques exist to quantify LAI, most of which are labor intensive, and all often fail to converge on similar estimates. . Recent large-scale bark beetle induced mortality greatly altered LAI, which is now dominated by younger and more metabolically active trees compared to the pre-beetle forest. Tree mortality increases error in optical LAI estimates due to the lack of differentiation between live and dead branches in dense canopy. Our study aims to quantify LAI using three different LAI methods, and then to compare the techniques to each other and topographic drivers to develop an effective predictive model of LAI. This study focuses on quantifying LAI within a small (~120 ha) beetle infested watershed in Wyoming’s Snowy Range Mountains. The first technique estimated LAI using in-situ hemispherical canopy photographs that were then analyzed with Hemisfer software. The second LAI estimation technique was use of the Kaufmann 1982 allometrerics from forest inventories conducted throughout the watershed, accounting for stand basal area, species composition, and the extent of bark beetle driven mortality. The final technique used airborne light detection and ranging (LIDAR) first DMS returns, which were used to estimating canopy heights and crown area. LIDAR final returns provided topographical information and were then ground-truthed during forest inventories. Once data was collected, a fractural analysis was conducted comparing the three methods. Species composition was driven by slope position and elevation Ultimately the three different techniques provided very different estimations of LAI, but each had their advantage: estimates from hemisphere photos were well correlated with SWE and snow depth measurements, forest inventories provided insight into stand health and composition, and LIDAR were able to quickly and efficiently cover a very large area.