T22B-07
Spatial and Temporal Evolution of Central Anatolian Volcanics
Tuesday, 15 December 2015: 11:50
306 (Moscone South)
Helen Deborah Gall1, Biltan Kürkçüoğlu2, Barry B Hanan3 and Tanya Furman1, (1)Pennsylvania State University Main Campus, University Park, PA, United States, (2)Hacettepe University, Ankara, Turkey, (3)San Diego State University, Geological Sciences, San Diego, CA, United States
Abstract:
The continental lithosphere beneath the Central Anatolian Volcanic Province has experienced a complex tectonic history with periods of convergence during closure of the Tethys Ocean followed by post-Miocene extension. The current environment reflects WSW movement of Anatolia in response to collision between the Afro-Arabian and Eurasian plates. Modern extensional basins bounded by oblique-slip faults provide the setting for mafic volcanism along the CAFZ and offer a window into the regional asthenosphere. We focus on Hasandag stratovolcano whose 13 Ma history includes three stages of edifice construction across which the erupted magmas have progressed from tholeiitic to calc-alkaline (Aydar and Gourgaud, 1998); the most recent lavas are of mildly alkaline affinity. Late Miocene to Quaternary Hasandag lavas have been interpreted as arc volcanism related to the Afro-Arabian and Eurasian collision, presenting a challenge as the calc-alkaline volcanism occurred within the modern extensional environment. Sr-Nd-Pb-Hf isotopic and major and trace element data on Hasandag alkaline basalts through dacites show that contributions from lithosphere previously enriched by subduction events have become less pronounced through time. Sr-Nd isotopic data indicate this temporal evolution, with older Hasandag lavas having higher values (~0.7050) than younger products (0.7041-0.7046) (Deniel et al. 1998, Alici Sen et al. 2004, this study). Geochemical data also reveal spatial differences along the Central Anatolian Volcanic Zone, e.g., 206Pb/204Pb and 143Nd/144Nd isotopic signatures vary consistently with latitude. The pronounced enrichment (Ba, Th, U) and depletion (Nb, Zr, Ta and Ti) patterns observed in primitive-mantle normalized element abundances at Hasandag are more prominent in southwestern volcanic complexes and less evident within northern centers. For example, Ba/Nb ratios increase from north to south along the CAFZ whereas Ba/Th ratios decrease. These data imply an overall increase in contribution from subduction-related materials from north to south along the CAFZ in post-Pliocene lavas. Evidence from Hasandag suggests that the signature may also decrease over time; perhaps as highly fusible metasomatized materials are exhausted during progressive melting.