A53D-05
Increases in Atmospheric Chlorine from Dichloromethane, a Gas Not Controlled by the Montreal Protocol.

Friday, 18 December 2015: 14:40
3010 (Moscone West)
Stephen A Montzka, NOAA Boulder, Boulder, CO, United States
Abstract:
Short-lived, anthropogenically produced chlorinated gases historically have not been controlled by the Montreal Protocol; their contribution to stratospheric halogen loading has been relatively small and constant. Since 2000, however, tropospheric mole fractions of dichloromethane (mean lifetime of 5 months) have increased by a factor of 2 at remote sites throughout the globe. Dichloromethane currently adds more chlorine to the atmosphere (~80 ppt) than either HCFC-141b or HCFC-142b, and the implied resulting increase in stratospheric chlorine in recent years is comparable to the increase in total Cl from HCFCs. Emissions driving this global increase have been estimated at 800 Gg/yr in 2012, which is more than half of the chlorine emitted from the three main CFCs during their peak emissions in the late 1980s. Although dichloromethane is used typically as a cleaning agent, solvent, and feedstock in the production of other chemicals, the cause of the recent atmospheric increase is not well understood. Here we will show that the substantial increase in emissions does not appear to be coming from the U.S., as our ongoing observations from tall towers and aircraft profiles over North America since 2005 show a decreasing trend in measured mole fractions in the continental boundary layer relative to the background atmosphere during this period. Instead, our data from remote sites across the Northern Hemisphere reveal a shift in the atmospheric distribution of dichloromethane since 2000 that implies increased emissions from lower latitudes in the northern hemisphere. These changing distributions will be presented and discussed, along with an exploration of the potential causes for the large inter-annual variations observed in the rate of increase and what the results suggest about the main loss mechanism for dichloromethane: oxidation by the hydroxyl radical.