B11B-0428
Evaluating Soil Oxygen as a Control on N2O Emissions from Ruminant Urine Patches under Different Irrigation Frequencies
Monday, 14 December 2015
Poster Hall (Moscone South)
Jennifer Owens1, Timothy J Clough1, Johannes Laubach2, John Hunt2, Rodney T Venterea3 and Rebecca L Phillips2, (1)Lincoln University, Lincoln, New Zealand, (2)Landcare Research, Lincoln, New Zealand, (3)USDA Beltsville Agricultural Research Center, Beltsville, MD, United States
Abstract:
Urine patches from grazing ruminant animals are a significant source of nitrous oxide (N2O) emissions, and irrigation is increasingly used to improve forage quality and yield for grazing cattle. The objective of this study was to test whether irrigation frequency influenced N2O emissions from urine patches on a free-draining grazed pasture soil. It was hypothesized that greater irrigation frequency would increase soil moisture thereby lowering soil oxygen (O2), and that these O2-limited conditions would increase the potential for N2O to be reduced to nitrogen gas (N2), resulting in lower N2O emissions. A field trial tested the effects of two irrigation frequencies and urine deposition on N2O fluxes measured daily for 35 days. Denitrification potential measurements using the acetylene inhibition technique were completed to infer N2O/(N2O+N2) ratios, and soil O2 concentrations were measured continuously at three depths within the soil profile. While a more frequent irrigation treatment resulted in a lower N2O/(N2O+N2) ratio, this did not give rise to lower N2O emissions. Nitrous oxide fluxes were not influenced by irrigation frequency, and approximately 0.09% of the nitrogen applied as urine was emitted as N2O from both irrigation treatments. Neither N2O nor soil O2 varied with individual irrigation events. Soil O2 ranged from 17 to 20% expect following urine deposition, where it temporarily decreased to 13%. Soil O2 measurements failed to explain N2O emissions, but a relationship was derived between N2O fluxes and estimates of soil gas diffusivity (Dp/Do). This work is the first to show how soil O2 concentrations vary under a urine patch and under different irrigation treatments, and supports Dp/Do as robust predictor of N2O emissions in situ.