T53B-04
Effect of distributed inelastic deformation on fault slip profiles and fault interaction under mid-crustal conditions

Friday, 18 December 2015: 14:25
302 (Moscone South)
Johanna M Nevitt and David D Pollard, Stanford University, Geological Sciences, Stanford, CA, United States
Abstract:
Under mid-crustal conditions, faults commonly are associated with distributed inelastic deformation (i.e., ductile fabrics). The effect of such inelastic deformation on fault slip profiles and fault interaction remains poorly understood, though it likely plays a significant role in the earthquake cycle. We have investigated meter-scale strike-slip faults exhumed from ~10 km depth in the Lake Edison granodiorite (Sierra Nevada, CA). These faults are characterized by slip-to-length ratios and slip gradients near fault tips that greatly exceed what is measured for faults in the brittle upper crust, or produced by linear elastic models. Using Abaqus, we construct elastoplastic finite element models to evaluate the impact of off-fault plasticity on the resulting slip profiles for both continuous and discontinuous faults. Elastoplastic models show that plastic strain near fault tips effectively lengthens faults, allowing for greater overall slip and increased slip gradients near fault tips. In the field, regions adjacent to fault tips contain mylonitized granodiorite and ductilely sheared dikes and schlieren, consistent with the model results. In addition, distributed plastic strain facilitates slip transfer between echelon fault segments, particularly for contractional step geometries. Relative to an isolated fault, fault segments adjacent to contractional steps are asymmetric, with the maximum slip shifted in the direction of the step. Immediately adjacent to the contractional step, fault slip is significantly reduced because shear offset is accommodated by distributed plastic shearing within the step, rather than by discrete slip on the faults. Although slip is locally reduced on each fault segment directly adjacent to a contractional step, overall slip transfer between discontinuous fault segments is most efficient for this step geometry. That is, faults segmented by contractional steps produce greater maximum slip than do those separated by extensional steps (assuming no opening fractures) under mid-crustal conditions.