Regime Shifts in Lakes: Organic Carbon Dynamics and Whole Ecosystem Responses

Monday, 14 December 2015
Poster Hall (Moscone South)
Nicholas J Anderson, University of Loughborough, Loughborough, United Kingdom
The concept of using sediment records to identify regime shifts in lakes has largely focussed on biological proxies, such as diatoms and chironomids. In this approach, long-term records of rapid ecological change are compared with independent proxies of the variables driving ecosystem change, for example, climate or catchment disturbance processes (hydrological budgets, deforestation, fire etc.). One of the main problems with this approach is that the sediment cores upon which the data analyses are made are taken from the central part of lakes, often at the deepest point. As a result, the ecological changes observed reflect pelagic (open water) processes rather than whole-lake responses. As most lakes (apart from hypertrophic systems) are dominated by benthic production it is unclear whether palaeolimnological assessments of regime shifts are representative of the whole lake response. Theoretically, this question can be addressed simply by using cores from shallow water. There are a number of problems with this approach, most notably the loss of temporal resolution in shallow water cores (due to the slower sediment accumulation rate) and the different biological assemblages in the shallow water (littoral) cores. There is a strong effect of water depth on the zonation and distribution of biological remains across any lake. An alternative approach therefore is to use total organic carbon [OC] accumulation rate as a measure of the whole lake response to see if there is, in fact, a regime shift at the whole lake scale. Here I present examples of Holocene OC accumulation rate responses to external forcing from shallow eutrophic and boreal lakes and compare them to biological records of structural ecological change to determine whether there has been a whole-lake regime shift.