OS53B-2019
Extraordinarily Warm Northeast Pacific Surface Waters: 2014 Observations

Friday, 18 December 2015
Poster Hall (Moscone South)
Richard K Dewey1, Steven F Mihaly1 and Howard Freeland2, (1)University of Victoria, Victoria, BC, Canada, (2)Institute of Ocean Sciences, Sidney, BC, Canada
Abstract:
Analysis of sea surface temperatures (SST) from January 2014 revealed a massive region in the northeast Pacific with extraordinarily warm conditions, exceeding all anomalies over the last several decades. Profile data from both Argo and Line-P surveys supports the Reynolds SSTa analysis and further indicates that the anomaly was, and continues to be, confined to the upper ocean, above approximately 100 m depth. The anomaly has lasted for many months, exceeding 4 standard deviations above the multi-decadal mean, a feature that would not be expected more than once in several millennia. The “blob”, as it is dubbed, drifted first off and then towards shore during the spring and fall of 2014 driven by, among other forces, the seasonal up and down-welling winds, respectively that occur along the west coast of North America. By November 2014, when winter down-welling winds became prevalent, the warm surface waters encroached all the way into Barkley Sound along western Vancouver Island, as measured by the continuous temperature measurements on the NEPTUNE ocean observatory of Ocean Networks Canada. The analysis includes some of the known dynamical variations which contributed to the formation of the blob, with an emphasis on mid to high latitude atmosphere-ocean conditions, avoiding the temptation to link the development processes occurring in the Gulf of Alaska in the winter of 2013 to equatorial phenomena.