S43A-2765
Intra-event and Inter-event Ground Motion Variability from 3-D Broadband (0-8 Hz) Ensemble Simulations of Mw 6.7 Thrust Events Including Rough Fault Descriptions, Small-Scale Heterogeneities and Q(f)
Thursday, 17 December 2015
Poster Hall (Moscone South)
Kyle Withers1, Kim Bak Olsen2, Zheqiang Shi1 and Steven M Day1, (1)San Diego State University, San Diego, CA, United States, (2)San Diego State Univ, San Diego, CA, United States
Abstract:
We model blind thrust scenario earthquakes matching the fault geometry of 1994 Mw 6.7 Northridge earthquake up to 8 Hz by first performing dynamic rupture propagation using a support operator method (SORD). We extend the ground motion by converting the slip-rate data to a kinematic source for the finite difference wave propagation code AWP-ODC, which incorporates an improved frequency-dependent attenuation approach. This technique has high accuracy for Q values down to 15. The desired Q function is fit to the ‘effective’ Q over the coarse grained-cell for low Q, and a simple interpolation formula is used to interpolate the weights for arbitrary Q. Here, we use a power-law model Q above a reference frequency in the form Q 0 f^n with exponents ranging from 0.0-0.9. We find envelope and phase misfits only slightly larger than that of the elastic case when compared with that of the frequency-wavenumber solution for both a homogenous and a layered model with a large-velocity contrast. We also include small-scale medium complexity in both a 1D layered model and a 3D medium extracted from SCEC CVM-S4 including a surface geotechnical layer (GTL). We model additional realizations of the scenario by varying the hypocenter location, and find that similar moment magnitudes are generated. We observe that while the ground motion pattern changes, the median ground motion is not affected significantly, when binned as a function of distance, and is within 1 interevent standard deviation from the median GMPEs. We find that intra-event variability for the layered model simulations is similar to observed values of single-station standard deviation. We show that small-scale heterogeneity can significantly affect the intra-event variability at frequencies greater than ~1 Hz, becoming increasingly important at larger distances from the source. We perform a parameter space study by varying statistical parameters and find that the variability is fairly independent of the correlation length. The intra-event variability of our simulations in the CVM is typically larger than that for the observations at frequencies > 1 Hz. However, this discrepancy tends to decrease when small-scale heterogeneity in the medium is included in the simulations, suggesting the need for a highly complex velocity model to fit ground motion variability.