GC24A-04
Using High Resolution Remotely Sensed Data to Predict Territory Occupancy and Mircrorefugia for a Habitat Specialist, the American Pika (Ochotona princeps)

Tuesday, 15 December 2015: 16:55
3003 (Moscone West)
Aidan Beers, University of Colorado at Boulder, Ecology and Evolutionary Biology, Boulder, CO, United States; University of Colorado at Boulder, Institute of Arctic and Alpine Research, Boulder, CO, United States
Abstract:
Climate change is likely to affect mountainous areas unevenly due to the complex interactions between topography, vegetation, and the accumulation of snow and ice. This heterogeneity will complicate relationships between species presence and large-scale drivers such as precipitation and make predicting habitat extent and connectivity much more difficult. We studied the potential for fine-scale variation in climate and habitat use throughout the year in the American pika (Ochotona princeps), a talus specialist of mountainous western North America known for strong microhabitat affiliation. Not all areas of talus are likely to be equally hospitable, which may reduce connectivity more than predicted by large-scale occupancy drivers. We used high resolution remotely sensed data to create metrics of the terrain and land cover in the Niwot Ridge (NWT) LTER site in Colorado. We hypothesized that pikas preferentially use heterogeneous terrain, as it might foster greater snow accumulation, and used radio telemetry to test this with radio-collared pikas. Pikas use heterogeneous terrain during snow covered periods and less heterogeneous area during the summer. This suggests that not all areas of talus habitat are equally suitable as shelter from extreme conditions but that pikas need more than just shelter from winter cold. With those results we created a predictive map using the same habitat metrics to model the extent of suitable habitat across the NWT area. These strong effects of terrain on pika habitat use and territory occupancy show the great utility that high resolution remotely sensed data can have in ecological applications. With increasing effects of climate change in mountainous regions, this modeling approach is crucial for quantifying habitat connectivity at both small and large scales and to identify potential refugia for threatened or isolated species.