H44D-04
Calibrating NMR measured porosity/permeability relationships using µXRCT measurements
Thursday, 17 December 2015: 16:45
3018 (Moscone West)
Harris E Mason, Megan M Smith, Yue Hao and Susan Carroll, Lawrence Livermore National Laboratory, Livermore, CA, United States
Abstract:
Carbonate reservoirs have garnered interest for potential use in carbon capture and storage (CCS) activities. To be suitable for long term carbon dioxide (CO2) storage, they must possess sufficient permeability either through existing connected pore space, or due to reactivity with CO2-acidified fluids. Adequate assessment of the target formation permeability will rely on accurate downhole well-logging tools. Primary among these tools is nuclear magnetic resonance (NMR) well-logging. Application of this tool relies on our ability to relate the porosity and pore distributions measured by NMR to permeability. These methods are challenging to apply in carbonate reservoirs with complex mineralogies where pores sizes often span orders of magnitudes. We have assessed the ability of NMR methods to measure permeability using rocks from the Weyburn-Midale CO2 Monitoring and Storage Project Saskatchewan, Canada and the Arbuckle injection zone at the Wellington CO2 storage demonstration site, Kansas. Results of laboratory measured permeability values of these rocks indicate that the standard NMR methods for predicting permeability values can produce values off by orders of magnitude within the same flow units. In this presentation, we present the results of a combined NMR and micro X-ray computed tomography (μXRCT) study of these rock cores to better estimate downhole permeability values of carbonate rocks. The results of the study suggest that the dramatic differences in predicted permeability values derive from large differences in the matrix porosity, pore network tortuosities, and mineralogy of the various rock units. We will present new laboratory measurements, and methodologies aimed at producing a universal NMR calibration procedure for determining permeability in carbonate reservoirs. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.