B33D-0747
Photochemical Alternation of Phragmites australis Plant Litter: New Insight into the Chemical Evolution of Particulate Organic Matter

Wednesday, 16 December 2015
Poster Hall (Moscone South)
Anthony J Carrasquillo1, Claudia E Gelfond2 and Benjamin David Kocar1, (1)Massachusetts Institute of Technology, Cambridge, MA, United States, (2)Massachusetts Institute of Technology, Civil and Environmental Engineering, Cambridge, MA, United States
Abstract:
The photolysis of natural organic matter (NOM) is a potential pathway for the alteration of material that is not easily biodegraded. Irradiation can alter the physical state of organic matter by facilitating the cycling between the particulate (POM) and dissolved (DOM) pools. However, a detailed understanding of the underlying chemical changes to the material in both phases is lacking. Here, we use a suspension of particles derived from Phragmites australis, a common marsh reed with high lignin content, as our model “recalcitrant” POM substrate. The solution was irradiated for three weeks with regular sampling, and the composition of the POM and the photo-produced DOM were measured separately using a suite of mass spectrometric and spectroscopic techniques. The chemical composition of individual molecules was measured by coupling soft ionization techniques (electrospray (ESI) and matrix assisted laser desorption (MALDI) to high-resolution mass spectrometry. Structural information, including the distribution of the major carbon containing functional groups, was obtained using a combination of FTIR for bulk analyses and scanning transmission x-ray microscopy (STXM) for spatially resolved chemistry. Results are discussed in the context of differences in chemical composition and structure with increased irradiation time for both organic matter pools. We observed a general shift in the mass spectra of POM towards lower molecular weight masses and an increase in the abundance of ions in DOM as a function of irradiation time- hence the larger POM matrix is likely fragmenting into smaller species that are more soluble. Spectroscopic measurements indicate that the abundance of acidic and alcohol functionalities increased with irradiation in both carbon pools. These complementary approaches provide new detailed information about how the chemical composition of recalcitrant NOM evolves as it is exposed to sunlight.