A11G-0140
The Validation of Ground Based Ozone Measurements over Korea.
Abstract:
The Validation of Ground Based Ozone Measurements over KoreaKorea will launch GEMS instrument in 2018 onboard the Geostationary Korea Multi-Purpose Satellite to monitor tropospheric gas concentrations in both high temporal and spatial resolution. In order to utilize information from satellite, it is crucial to carry out validation of satellite data with respect to ground-based measurements because satellite retrievals suffer from large error. The purpose of this study is to examine the performance of total ozone measurements from Pandora, Brewer, and Dobson which will be used for validation of GEMS ozone product. Because single version of the satellite retrieval algorithm is used to process the entire data set for a given satellite instrument and satellite instrument characteristics are typically changing slowly, it is assumed that sudden jumps or large drifts in ground-satellite total ozone measurements difference for individual sites are commonly related to problems with ground-based measurements. Thereby, satellite measurements can be used to estimate the performance of the ground-based measurement network as well as to identify potential problems residing in individual station. As a reference of satellite ozone measurements, we have selected ozone data derived from OMI-TOMS V8.5 algorithm because it is a very robust algorithm that has well studied about various error sources such as the effects of aerosols and clouds, variation in shape of ozone profiles with season, latitude, and total ozone. For the future validation of GEMS measurements, Korea has planned to use Pandora measurement that has been started operating since 2012. However, Pandora measurements reported to have unusual high total column ozone in the presence of clouds from the comparison of Pandora with OMI total ozone during DISCOVERY-AQ campaign. In this study, we will analyze the Pandora measurements associated with cloud and introduce the statistical technique, Kalman Filter, to correct the cloud contaminated ozone measurements.