V23B-3112
Amphibole Thermometry and a Comparison of Results from Plutonic and Volcanic Systems

Tuesday, 15 December 2015
Poster Hall (Moscone South)
Trent Michael Sherman1, Keith Daniel Putirka1, Alyssa Marie Aguilar De Los Reyes1 and Barbara Cäcilia Ratschbacher2, (1)California State University Fresno, Fresno, CA, United States, (2)University of Southern California, Los Angeles, CA, United States
Abstract:
Recent work (Ridolfi and Renzulli 2014) shows that amphiboles can be used to infer magmatic temperatures, even without knowledge of co-existing liquids. Here, we apply this approach, using new calibrations, to investigate felsic-mafic magma interactions, in a volcanic (Lassen Volcanic Center, a Cascade volcano) and plutonic (the Jurassic Guadalupe Igneous Complex) system. Preliminary data suggest that volcanic processes, as might be expected, preserve higher temperatures than plutonic materials (on average, volcanic amphiboles recorded 907±57.3°C while plutonic amphiboles recorded 764±59.7°C). We also find that the average T of a given mineral grain decreases with increased mineral size such that those crystallized below 800°C sometimes reach sizes beyond ~1mm, while those near 900°C appear truncated to ~0.3mm. It is not clear if T is the only control on amphibole crystal growth; however, our results would imply that larger grains not only require more time to grow but require continued undercooling. Significant cooling or heating is also recorded in many volcanically- and plutonically-grown grains, which may reflect transitioning between magmas of different T and composition. Core-to-rim cooling trends (with a common T of drop of 80oC) likely represent mafic-to-felsic magma transitions, whereas core-to-rim heating of similar magnitudes indicate a felsic-mafic transition. Some grains, though, exhibit a constant T (in the range 700-900°C) from core to rim, which perhaps indicates some shielding from magma mixing processes. Amphiboles might thus provide a reliable record of the intensity of magma mingling and mixing experienced by any particular enclave. Interestingly, volcanically-derived amphiboles appear to mostly record cooling towards the rims, while their plutonic counterparts tend to experience heating. It would thus appear that at Lassen, amphiboles are unaffected by later mafic magma recharge, but at the GIC, the plutonic amphiboles are more likely to be assimilated into hotter recharge magma. This contrast may simply reflect an accident of sampling, but it might also be important for understanding how recharge magmas interact with resident felsic magmas under contrasting conditions of magma storage.