C53C-0801
Fifteen Year Record of Land Surface Temperature and Surface Albedo over Ice Caps in the Queen Elizabeth Islands, Arctic Canada, 2000-2014

Friday, 18 December 2015
Poster Hall (Moscone South)
Colleen Mortimer, University of Alberta, Edmonton, AB, Canada
Abstract:
This study investigates the relationship between changes in land surface temperature (LST) and surface albedo over ice caps in the Queen Elizabeth Islands (QEI), Arctic Canada, for the period 2000-2014.

Higher mean summer LST can indicate a more intense and/or longer melt season. Higher LST has been tied to higher rates of glacier mass loss as well as a reduction in surface albedo. A lower albedo means more solar radiation is absorbed which can increase the LST, leading to more melt and further reductions in albedo. Recent work on the Greenland Ice Sheet, immediately east of the QEI, has found recent reductions in ice sheet albedo to be consistent with documented increases in summer air and ice temperatures as well as melt and mass loss. No studies documenting large-scale trends in surface albedo and their relationship to land surface temperatures, surface melt and glacial mass balance exist for the QEI.

Data from the Moderate Resolution Imaging Spectroradiometer (MODIS) are used to determine mean summer clear-sky land surface temperature over QEI ice caps and glaciers from 2000 to 2014 (MOD11A2), and mean and minimum shortwave broadband white-sky and black-sky albedo from 2001 to 2014 (MCD43A3). Preliminary results reveal 14yr (2001-2014) mean summer melt season white-sky and black-sky surface albedos, of 0.547 and 0.562, respectively, averaged across all ice masses in the QEI. Mean summer QEI-wide ice surface temperature, averaged over the period 2000-2014 was 269.2K with a maximum of 270.4K in 2007. Manson Icefield and Sydkap Ice Cap, situated on southern Ellesmere Island had both the lowest mean summer albedo and the highest mean summer LST whilst the ice masses on northern Ellesmere and Axel Heiberg Islands, in the northwest sector of the QEI, had both the highest mean summer albedo and the lowest mean summer LST. Expanding on these preliminary results, the spatial and temporal trends in LST and albedo over ice caps in the QEI will be presented and the relationship between these two variables will be investigated.