H54E-06
Rainwater Harvesting in South India: Understanding Water Storage and Release Dynamics at Tank and Catchment Scales

Friday, 18 December 2015: 17:15
3011 (Moscone West)
Nandita B Basu, University of Waterloo, Waterloo, ON, Canada
Abstract:
Rainwater harvesting, the small-scale collection and storage of runoff for irrigated agriculture, is recognized as a sustainable strategy for ensuring food security, especially in monsoonal landscapes in the developing world. In south India, these strategies have been used for millennia to mitigate problems of water scarcity. However, in the past 100 years many traditional rainwater harvesting systems have fallen into disrepair due to increasing dependence on groundwater. With elevated declines in groundwater resources, there is increased effort at the state and national levels to revive older systems. Critical to the success of such efforts is an improved understanding of how these ancient water-provisioning systems function in contemporary landscapes with extensive groundwater pumping and shifted climatic regimes. Knowledge is especially lacking regarding the water-exchange dynamics of these rainwater harvesting “tanks” at tank and catchment scales, and how these exchanges regulate tank performance and catchment water balances. Here, we use fine-scale water level variations to quantify daily fluxes of groundwater, evapotranspiration, and sluice outflows in four tanks over the 2013 northeast monsoon season in a tank cascade that covers a catchment area of 28.2 km2. Our results indicate a distinct spatial pattern in groundwater-exchange dynamics, with the frequency and magnitude of groundwater inflow events (as opposed to outflow) increasing down the cascade of tanks. The presence of tanks in the landscape dramatically alters the catchment water balance, with catchment-scale runoff:rainfall ratios decreasing from 0.29 without tanks to 0.04 – 0.09 with tanks. Recharge:rainfall ratios increase in the presence of tanks, from ~0.17 in catchments without tanks to ~ 0.26 in catchments with tanks. Finally, our results demonstrate how more efficient management of sluice outflows can lead to the tanks meeting a higher fraction of crop water requirements.