A33I-0289
West Coast atmospheric river climatology in CMIP5 climate models

Wednesday, 16 December 2015
Poster Hall (Moscone South)
Michael Warner, Cliff Mass and Eric P Salathe, University of Washington Seattle Campus, Seattle, WA, United States
Abstract:
In recent years, there has been a flurry of research on how atmospheric river events (ARs) will respond to anthropogenic global warming. This study uses 10 CMIP5 RCP 8.5 climate models to focus on changes in AR frequency, seasonality, and synoptic conditions along the west coast of the United States and is a follow-up to previous work by the same authors (Warner et al. 2015) which investigated expected changes in AR intensity in the same region. There are only very slight changes in annual AR climatology from the end of the last century to the end of this century when considering the most extreme integrated water vapor transport (IVT) events (99th percentile). However, when evaluating by the number of future days exceeding a historical threshold, there are significant increases in extreme IVT events in all months, especially during months when the majority of events take place. The peaks in historical and future frequency occur in similar months given the amount of model variability. Extreme IVT events appear to be occurring slightly earlier in the season, particularly along the northern US coast, and these results are similar to other studies. Spatially, 10-model mean historical composites of IVT reveal canonical AR conditions. At locations farther south, there is less model agreement on the spatial extent and intensity of AR events; whereas farther north, the various models are in agreement. Composites of future events indicate very little spatial change from historical events. The location and orientation of AR events in the historical and future time periods are similar, and the upper-level winds change little over that time period (Warner et al. 2015). This suggests little change in synoptic conditions for approaching ARs. The future-historical difference plots highlight the largest changes expected in the future, namely increases in IVT intensity which are primarily associated with thermodynamic changes related to future integrated water vapor increases due to a warming atmosphere.