V51H-08
Hydrothermal and Diagenetic Mineralization on Mars

Friday, 18 December 2015: 09:45
310 (Moscone South)
Bethany L Ehlmann, California Institute of Technology, Pasadena, CA, United States
Abstract:
Predicted by geophysical modeling, the mineraolgic record of early Mars groundwater has only recently been discovered. First, rover exploration in sedimentary basins reveals diagenesis. At Meridiani, sandstone porosity is occluded by precipitation of secondary sulfates, hematite, and silica. Multiple alteration episodes are indicated by crystal vugs, disruption of preexisting textures by hematite concretions, and grain coatings (e.g. McLennan et al., 2005). At Gale crater, raised ridges in mudstones, interpreted to be early diagenetic features, are crossed by later-emplaced hydrated calcium sulfate veins (e.g. Grotzinger et al., 2014). Waters in Gale were likely circumneutral while jarosite mineralogy at Meridiani implies acidic waters. Second, systems of raised ridges at 100-m scale are observed from orbit in multiple Martian sedimentary rock units. An outstanding example is sulfate-bearing sediments exhumed at the northern margin of the Syrtis Major lavas (e.g. Quinn & Ehlmann, 2015). Polygonal and with no clearly preferred orientation, the ridges rise 5-30 m above the surrounding terrain. Parallel light-toned grooves with dark interiors (indicative of isopachous fills) and jarosite in ridge mineralogy point to mineralization by acidic waters. Third, some mineral assemblages observed from orbit represent the products of subsurface aqueous alteration at elevated temperatures (Ehlmann et al., 2011). These are globally distributed, exposed in scarps and by impact cratering. Mineral assemblages variously include (a) serpentine and carbonate; (b) prehnite and chlorite, and (c) zeolites. Collectively, these datasets indicate that groundwaters were spatially widespread on ancient Mars, contributing to the sustenance of lakes and to the alteration of bedrock to >1 km depths. While the Martian surface may have always been relatively inhospitable, a warmer, wetter subsurface provided a long-term potentially habitable environment. Key outstanding questions remaining include groundwater sources, their composition and compositional variability, and subsurface transport distances. Continued exploration of Mars, combined with studies of analogous bedrock mineralization on Earth, will advance understanding of environments with liquid water during Mars’ first billion years.