GC53B-1202
Comparison of streamflow prediction skills from NOAH-MP/RAPID, VIC/RAPID and SWAT toward an ensemble flood forecasting framework over large scales
Friday, 18 December 2015
Poster Hall (Moscone South)
Mohammad Adnan Rajib, Purdue University, West Lafayette, IN, United States
Abstract:
Considering the differences in how individual models represent physical processes for runoff generation and streamflow routing, use of ensemble output is desirable in an operational streamflow estimation and flood forecasting framework. To enable the use of ensemble streamflow, comparison of multiple hydrologic models at finer spatial resolution over a large domain is yet to be explored. The objective of this work is to compare streamflow prediction skills from three different land surface/hydrologic modeling frameworks: NOAH-MP/RAPID, VIC/RAPID and SWAT, over the Ohio River Basin with a drainage area of 491,000 km2. For a uniform comparison, all the three modeling frameworks share the same setup with common weather inputs, spatial resolution, and gauge stations being employed in the calibration procedure. The runoff output from NOAH-MP and VIC land surface models is routed through a vector-based river routing model named RAPID, that is set up on the high resolution NHDPlus reaches and catchments. SWAT model is used with its default tightly coupled surface-subsurface hydrology and channel routing components to obtain streamflow for each NHDPlus reach. Model simulations are performed in two modes, including: (i) hindcasting/calibration mode in which the models are calibrated against USGS daily streamflow observations at multiple locations, and (ii) validation mode in which the calibrated models are executed at 3-hourly time interval for historical flood events. In order to have a relative assessment on the model-specific nature of biases during storm events as well as dry periods, time-series of surface runoff and baseflow components at the specific USGS gauging locations are extracted from corresponding observed/simulated streamflow data using a recursive digital filter. The multi-model comparison presented here provides insights toward future model improvements and also serves as the first step in implementing an operational ensemble flood forecasting framework for the entire Mississippi Basin.