V33B-3108
Magmatic versus phreatomagmatic fragmentation: absence of evidence is not evidence of absence

Wednesday, 16 December 2015
Poster Hall (Moscone South)
James D L White, University of Otago, Dunedin, New Zealand and Greg A Valentine, University at Buffalo, Buffalo, NY, United States
Abstract:
What are the fragmentation processes in volcanic eruptions? At meetings like this sessions ask "what can pyroclasts tell us?" and the answer is mostly "the properties of the magma at the point of solidification." The only place a pyroclast can preserve a fragmentation signature is at its surface, as the fracture or interface that made it a fragment. Commonly contrasted are "phreatomagmatic" and "magmatic" fragmentation in eruptions. Strictly, the latter means only fragmentation of magma without external water, but it often carries the connotation of disruption by bubbles of magmatic gas. Phreatomagmatic fragmentation implies a role for external water in fragmenting the magma, including vaporization and expansion of water as steam with rapid cooling/quenching of the magma. Magma is necessarily involved in phreatomagmatic fragmentation, and a common approach to assessing whether a pyroclast formed by magmatic or phreatomagmatic fragmentation is to make a stepwise assessment. This often uses particle vesicularity (high=magmatic), shape of particles (blocky=phreatomagmatic), degree of quenching (high=phreatomagmatic), or a glassy fluidal exterior film on particles (present=magmatic). It is widely known that no single one of these criteria is entirely diagnostic and other criteria are often considered, such as welding (=magmatic), particle aggregation (=phreatomagmatic), lithic-fragment abundance (high=phreatomagmatic), and proportion of fines (high=phreatomagmatic). Magmatic fragmentation varies, and even without water can yield anything from rhyolite pumice to obsidian to basaltic achneliths or carbonatitic globules. This makes direct argument for magmatic fragmentation difficult, and many papers have taken an alternative approach: they have "tested" for phreatomagmatism using the fingerprints listed above, and if the fingerprint is lacking a magmatic fragmentation process is considered to be "proven". In other words, absence of evidence for phreatomagmatic fragmentation is taken as evidence of its absence. We argue that this approach is fundamentally invalid, that the criteria used are typically incorrect or incorrectly applied, and that for many, perhaps most, deposits it may not be possible to determine the fragmentation process at all given our current state of knowledge.