A53A-0368
Narrowband NanoSat Scale Photometry for VUV Planetary and Heliophysics missions
Abstract:
Remote vacuum ultraviolet (VUV) soundings to support Explorer-class atmospheric research are typically enabled by large aperture, wideband spectrographs carefully pointed to measure a planet’s disk and limb regions (i.e. TIMED/GUVI and MAVEN/UVS).An alternate measurement paradigm is to identify key aeronomical emission targets (i.e HI 121.6-nm, OI 135.6-nm, N2 Lyman-Birge-Hopfield band 135 - 155 nm) and create a series of narrowband photometers each with greater in-band sensitivity (relative to a spectrograph) due to enhanced out-of-band rejection and absence of a dispersive element.
Recent advances in narrowband VUV coating and PMT miniaturization have enabled design of a dual-channel nanosatellite-scale VUV photometer with flight heritage significantly leveraged from the NASA POLAR UVI imager the Air Force CubeSat Tiny Ionospheric Photometer (CTIP).
Herein we present further modeled sensitivity studies and current build status of the dual-channel thermosphere/ionosphere photometer (DTIP) and address notional missions including dayside O/N2 composition, auroral energetics, nightside plasma structuring and peak layer characterization, and hydrogen geocoronal tomographic imaging.