B43L-03
Soil Warming and Rhizosphere Effects on Root Litter Decomposition at Two Depths in a Mediterranean Grassland Ecosystem
Abstract:
Accurate understanding of soil processes is critical for predicting climate-ecosystem feedbacks. We investigated the effects of soil warming and plant rhizosphere on decomposition of 13C-labeled roots buried at two soil depths at the field lysimeter facilities at Hopland Research and Extension Center, CA. The lysimeters contain soil columns 38-cm in diameter and 48-cm deep (0-15 cm A-horizon and 15-48 cm B-horizon, Laughlin soil) sown with an annual grassland mix. The experimental design includes three treatments: heated, ambient, and unplanted. In February 2014 we added 13C-labeled Avena fatua roots to either 8-12 cm or 38-42 cm. We measured loss of 13C in CO2 from the soil surface and in leachate as dissolved organic carbon (DOC) over two growing seasons. At the end of each growing season we recovered the 13C remaining in the soil. In addition, we monitored plant productivity and soil temperature and moisture.The rates of both soil respiration and DOC losses were greatest in heated and least in unplanted plots, although respiration losses far outweighed leachate losses. Treatment affected timing of decomposition; added root litter was respired earlier in the ambient plots and later in the unplanted plots in both years. The litter addition stimulated native soil respiration in year 1 heated plots. The depth of the litter addition did not have an effect on soil respiration. However, after the first growing season, less added root litter remained in the A than in the B horizon (both in the visible root fraction and in the 2mm soil fraction), indicating lower overall decomposition rates at depth.
These results, including 13C recovery following the 2nd growing season and soil microclimate variables, will be used to develop a mechanistic understanding of the impacts of soil warming, the rhizosphere, and soil depth on root decomposition and soil organic matter dynamics, and should improve our predictions of the feedbacks between climate change and carbon cycling throughout the soil profile.