V53D-3151
Coarse Grain Progradation in a Foreland basin: Application of Detrital Zircon Double Dating to Cenozoic Stratigraphy, Eastern Cordillera, Colombia.

Friday, 18 December 2015
Poster Hall (Moscone South)
Soty Odoh1, Joel Edward Saylor2, Camilo Higuera-Diaz3, Thomas J Lapen1 and Peter Copeland2, (1)University of Houston, Houston, TX, United States, (2)University of Houston, Department of Earth and Atmospheric Sciences, Houston, TX, United States, (3)External Advisor, Bogota, Colombia
Abstract:
Progradation of coarse clastic material into distal foreland basins has been attributed to both 1) enhanced sediment production during rapid tectonic exhumation and 2) sediment reworking during tectonic quiescence. The Floresta and Medina basins in the Eastern Cordillera record deposition of alternating coarse- and fine-grained clastic strata in medial and distal (respectively) Cenozoic foreland basins. The Medina Basin records the continued eastward progradation of the deformation front in the Neogene. We use detrital zircon U-Pb (ZPb) and (U-Th)/He (ZHe) analyses from the Paleogene Floresta Basin and the entire Cenozoic Medina Basin record to evaluate the effects of episodic thrust-belt exhumation and wide-spread deposition of coarse-grained sediments in the adjacent foreland basin. Both ZPb and ZHe systems are applied to individual grains (double dating) to constrain source area and up-section variations in exhumation rates. Changes in exhumation rate or introduction of new sediment sources are recorded as changes in lag time (ZHe age – depositional age). Analysis of 6 samples from the Floresta Basin shows a decrease in lag time during deposition of the coarse-grained middle Eocene Picacho Formation and upper Paleocene Socha Sandstone suggesting that Paleogene deposition of coarse-grained intervals in this medial location corresponds to an increase in exhumation rate. However, initial results from the Medina basin are less clear as there is evidence for Paleocene volcanic input but no clear evidence for thrust-belt related sediment until the Oligocene-early Miocene. We interpret the evidence for different sediment sources for Eocene strata in the axial Eastern Cordillera (Floresta) versus the Eastern foothills (Medina) as indicative of separation of these two regions by an emergent forebulge. Exhumation rate and granularity appear to be inversely correlated in post-Oligocene strata, though confirmation of initial interpretations awaits larger samples sizes