H11C-1363
Systematic Mapping and Statistical Analyses of Valley Landform and Vegetation Asymmetries Across Hydroclimatic Gradients

Monday, 14 December 2015
Poster Hall (Moscone South)
Michael J Poulos1, Jennifer L Pierce1, James P McNamara1, Alejandro N Flores1 and Shawn G Benner2, (1)Boise State University, Boise, ID, United States, (2)Boise State University, Department of Geosciences, Boise, ID, United States
Abstract:
Terrain aspect alters the spatial distribution of insolation across topography, driving eco-pedo-hydro-geomorphic feedbacks that can alter landform evolution and result in valley asymmetries for a suite of land surface characteristics (e.g. slope length and steepness, vegetation, soil properties, and drainage development). Asymmetric valleys serve as natural laboratories for studying how landscapes respond to climate perturbation. In the semi-arid montane granodioritic terrain of the Idaho batholith, Northern Rocky Mountains, USA, prior works indicate that reduced insolation on northern (pole-facing) aspects prolongs snow pack persistence, and is associated with thicker, finer-grained soils, that retain more water, prolong the growing season, support coniferous forest rather than sagebrush steppe ecosystems, stabilize slopes at steeper angles, and produce sparser drainage networks. We hypothesize that the primary drivers of valley asymmetry development are changes in the pedon-scale water-balance that coalesce to alter catchment-scale runoff and drainage development, and ultimately cause the divide between north and south-facing land surfaces to migrate northward. We explore this conceptual framework by coupling land surface analyses with statistical modeling to assess relationships and the relative importance of land surface characteristics. Throughout the Idaho batholith, we systematically mapped and tabulated various statistical measures of landforms, land cover, and hydroclimate within discrete valley segments (n=~10,000). We developed a random forest based statistical model to predict valley slope asymmetry based upon numerous measures (n>300) of landscape asymmetries. Preliminary results suggest that drainages are tightly coupled with hillslopes throughout the region, with drainage-network slope being one of the strongest predictors of land-surface-averaged slope asymmetry. When slope-related statistics are excluded, due to possible autocorrelation, valley slope asymmetry is most strongly predicted by asymmetries of insolation and drainage density, which generally supports a water-balance based conceptual model of valley asymmetry development. Surprisingly, vegetation asymmetries had relatively low predictive importance.