C51A-0686
Investigating the Sensitivity of Arctic Sea Ice to Variability in Early Summer Cloud Radiative Effect

Friday, 18 December 2015
Poster Hall (Moscone South)
Michalea D King, University of Delaware, Geography, Newark, DE, United States
Abstract:
Arctic sea ice is a highly sensitive and integral component of the climate system. The observed decline of sea ice in recent decades has affected Arctic ecosystems, transportation, and atmospheric processes. For these reasons, the development of skillful seasonal model predictions is essential, particularly for the early autumn when Arctic ice retreats to its minimum extent. However, a high degree of temporal and spatial variability has made sea ice predictions challenging. Arctic clouds become a large source of this variability by altering the amount of insolation and longwave radiation that is received at the surface. The goal of this research is to identify the predictive value of early summer cloud radiative effect (CRE) on autumnal sea ice extent. Absorbed solar radiation at the surface is most sensitive to cloud cover and composition during months of peak solar insolation, and may precondition the melting momentum of the sea ice in the subsequent months. Satellite data products, such as CERES, are used to investigate trends in cloud cover and radiative properties over the entire Arctic, as well as in several specific Arctic regions. This data, along with satellite sea ice concentration products, will be used to investigate the sensitivity of autumnal sea ice extent to changes in CRE throughout the melt season. The influence of relevant, larger-scale climate oscillations on atmospheric regimes and resulting cloud distribution will also be given consideration.